Affiliation:
1. School of Geosciences, The University of Sydney, NSW 2006 Dept. de Géologie, UMR-CNRS 6524, Université Jean Monnet
St Etienne, F42023, France
2. School of Earth and Environment, University of Leeds
Leeds, LS2 9JT, UK
Abstract
AbstractIn the Archaean, the combination of warmer continental geotherm with a lighter sub-continental lithospheric mantle suggests that gravitational forces played a more significant role in continental lithospheric deformation. To test this hypothesis, we compare the evolution of the deformation and the regional state of stress in ‘Archaean-like’ and ‘Phanerozoic-like’ lithospheres submitted to the same boundary conditions in a triaxial stress-field with imposed convergence in one direction. For plausible physical parameters, thickening of normal to cold Phanerozoic lithospheres produces relatively weak buoyancy forces, either extensional or compressional. In contrast, for Archaean continental lithospheres, or for anomalously warm Phanerozoic lithospheres, lateral gravitationally-driven flow prevents significant thickening. This conclusion is broadly consistent with: (1) the relative homogeneity of the erosional level now exposed at the surface of Archaean cratons, (2) the sub-aerial conditions that prevailed during the emplacement of up to 20 km of greenstone cover, (3) the relatively rare occurrence in the Archaean record of voluminous detrital sediments, (4) the near absence of significant tectonic, metamorphic and magmatic age gradients across Archaean cratons, (5) the relative homogeneity of strain across large areas, and (6) the ubiquitous presence of crustal-scale strike slip faults in many Late Archaean cratons.
Publisher
Geological Society of London
Subject
Geology,Ocean Engineering,Water Science and Technology
Cited by
96 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献