Factors influencing the deposit geometry of experimental turbidity currents: implications for sand-body architecture in confined basins

Author:

Al Ja’Aidi Omar S.1,McCaffrey William D.2,Kneller Benjamin C.3

Affiliation:

1. College of Science, Sultan Qaboos University PO Box 36, Al-Khod, Oman

2. School of Earth Sciences, University of Leeds Leeds LS2 9JT, UK mccaffrey@earth.leeds.ac.uk

3. Institute for Crustal Studies, Girvetz Hall, University of California Santa Barbara CA 93106, USA

Abstract

AbstractTwo sets of scaled laboratory experiments were performed to examine the effect of flow volume, flow density and grain-size distribution on the transport efficiency of turbidity currents. The experiments employed two sediment analogues (ballotini and silica flour) intended to model medium- to coarse-grained sand and mud respectively. In the first set of experiments each parameter was varied to examine its effect upon deposit geometry. Increases in the initial flow density, volume and proportion of fines had the effect of increasing the amount of sediment that was transferred to the floor of the experimental tank by the turbidity currents. Increase of each of these parameters has a characteristic effect on the three-dimensional geometry of the deposit: the deposits of large-volume flows are elongate, and those of fines-rich flows are broad. Increase of flow density increases the initial potential energy of the flow, thus increasing the runout distance; increase of the initial density beyond a sediment concentration of 13% by mass results, however, in a reverse of the geometrical trend of deposit elongation, possibly because of turbulence suppression at high densities. Increase of flow volume also increases the initial potential energy, and reduces the rate of velocity decrease due to gravitational spreading. Increase in the proportion of fines leads to maintenance of negative buoyancy, as the fine fraction remains suspended until the flow has virtually come to rest; it also decreases the settling velocity of the coarser fraction and thus delays its sedimentation. The second set of experiments was performed to investigate the influence of flow efficiency on the interaction of turbidity currents with topography. A single arcuate obstacle was placed in the path of the flows. In successive experiments flow efficiency was increased by progressively increasing the proportion of fines (silica flour). Both the proportion of sediment reaching the obstructing topography and the proportion of it able to surmount the topography increased as flow efficiency increased. Thus flow efficiency may determine whether or not an enclosed basin hosts deposits whose geometry has been affected by the confinement, and may also determine the relative effectiveness of the topography in confining inbound turbidity currents, and thus trapping their sediment load.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Reference45 articles.

1. Observations on Experimental, Nonchannelized, High-Concentration Turbidity Currents and Variations in Deposits Around Obstacles

2. Amy L. A. (2000) Architectural analysis of a sand-rich confined turbidite basin: the Grès de Peïra Cava, South-East France. Ph.D. thesis (Leeds University, UK).

3. The flow of cohesionless grains in fluids

4. A high resolution ultrasonic bed profiler for use in laboratory flumes;Best;Journal of Sedimentary Research,1994

5. Drag reduction in turbulent muddy seawater flows and some sedimentary consequences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3