A GPR study of sedimentary structures within a transgressive coastal barrier along the Danish North Sea coast

Author:

Møller Ingelise1,Anthony Dennis12

Affiliation:

1. Geological Survey of Denmark and Greenland Øster Voldgade 10, DK-1350 Copenhagen K, Denmark ilm@geus.dk

2. Royal Danish Administration of Navigation and Hydrography Overgaden over Vandet 62B, DK-1023 Copenhagen K, Denmark dea@fomfrv.dk

Abstract

AbstractThe Danish North Sea coast is characterized by the presence of coastal barrier systems. One of these systems, the Holmsland Barrier, is a transgressive wave-dominated barrier. For the purpose of studying large-scale architecture in a transgressive barrier, as well as small-scale sedimentary structures, a ground penetrating radar (GPR) field experiment has been carried out. The study focuses on the identification of high-amplitude reflections of the large-scale architecture of the barrier and the recognition of small-scale structures for interpretation of coastal processes. The observed radar facies fall into two groups, both interpreted as storm washover deposits. One group, dominated by parallel to subparallel reflection, is related to the seaward horizontal stratification in the washover fans. The other group, dominated by sigmoid and oblique clinoforms, is related to delta foreset stratification, indicating that the washover fans are terminated in standing water. The observations derived from the GPR study of the Holmsland Barrier suggest that this transgressive barrier is composed almost entirely of washover deposits with local small amounts of aeolian deposits. This study has shown that the GPR method is outstanding in mapping both large-scale architecture and small-scale internal structures in a coastal barrier.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3