Hydrocarbon potential of the Kish Bank Basin: integration within a regional model for the Greater Irish Sea Basin

Author:

Dunford G. M.1,Dancer P. N.2,Long K. D.3

Affiliation:

1. Dunford Exploration Limited, Durham Cottage Hewelsfield Common GL15 6US, UK G.Dunford@g-dunford.demon.co.uk

2. Enterprise Energy Ireland Embassy House, Herbert Park Lane, Ballsbridge, Dublin 4, Ireland

3. Enterprise Energy Norge Ltd Løkkeveien 103, PO Box 399, N-4002 Stavanger, Norway

Abstract

AbstractThe Kish Bank Basin lies in the western Irish Sea c. 20 km east of Dublin. It is one of a number of remnants of a larger Permo-Triassic basin system that may have extended across the whole of the Irish Sea. It has a geological history similar to that of the East Irish Sea Basin, initially developing by the reactivation of Caledonian faults that controlled subsequent deposition during Dinantian and Namurian time, with Westphalian deposition in a sag-basin that overstepped the adjacent basement highs. Variscan dextral transpression resulted in the formation of the Codling and Bray faults, and Permian to Jurassic extension formed a set of north-south-trending faults. Liassic outliers are preserved in the hanging walls of the basin margin faults. Early Cretaceous uplift was followed by chalk deposition. Tertiary movements reactivated older faults, isolating the Kish Bank Basin, and producing 9 km of dextral strike-slip along the Codling Fault Zone. The main reservoir in the hydrocarbon play is provided by the Sherwood Sandstone Group, as successfully exploited in the East Irish Sea. Three wells have been drilled to test this reservoir. These encountered high-quality Sherwood Sandstone reservoirs beneath the good potential seal of the Mercia Mudstone Group (which included thick halites). Source rock potential is from either the Westphalian Coal Measures, as penetrated in well 33/22-1, or from inferred Dinantian to Namurian basinal shales. There is good evidence of an active source system, with oil shows in wells 33/17-1 and 33/22-1, data from geochemical analysis of sea-bed cores, a ‘Seepfinder’ survey, sea-bed mounds and seismic evidence of shallow gas. The main risks of the play are the migration pathway and the timing of trap formation with respect to migration. Migration favours the eastern side of the basin, and many of the tilted fault blocks that formed during Permian to Jurassic time have been modified by Early Cretaceous inversion and by Tertiary strike-slip compression. All of the structures that have been drilled to date have been either formed or modified after the time of peak hydrocarbon generation and migration.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3