The μ2M project on quantifying the effects of biofilm growth on hydraulic properties of natural porous media and on sorption equilibria: an overview

Author:

Brydie J. R.1,Wogelius R. A.2,Merrifield C. M.3,Boult S.2,Gilbert P.4,Allison D.4,Vaughan D. J.2

Affiliation:

1. British Nuclear Fuels plc Sellafield, Cumbria CA20 1AH, UK

2. Department of Earth Sciences and Williamson Research Centre for Molecular Environmental Science, University of Manchester Oxford Road, Manchester M13 9PL, UK david.vaughan@manchester.ac.uk

3. School of Engineering, University of Manchester Oxford Road, Manchester M13 9PL, UK

4. School of Pharmacy and Pharmaceutical Sciences, University of Manchester Oxford Road, Manchester M13 9PL, UK

Abstract

AbstractThe physical and chemical effects of bacterial biofilm formation upon hydraulic conductivity, mineral-solution interactions and the formation of biogenic mineral precipitates have been studied over a wide range of scales, from microscopic to macroscopic. Several novel pieces of equipment have been designed, constructed and commissioned in order to measure the physical effects of biofilms upon fluid flow through fractures and porous media, the overall effects of biofilm formation upon mineral surface reactivity, and the imaging and identification of mineral precipitates formed due to the presence of biofilm and bacterial cell surface polymers on a quartz surface. This paper presents an overview of key experimental methods and selected results; further experimental information is being published elsewhere.Biofilm formation with quartz sand in artificial groundwater resulted in a two orders of magnitude reduction in hydraulic conductivity under bench-scale constant head conditions. However, under quasi-environmental conditions within macroscopic centrifuge experiments, a reduction of 21% was measured, revealing differences in measurements and, hence, the value of the macroscopic experimental work in scaling from micro to macro. In-situ microscopic evaluation of biofilms within simulated quartz rock fractures and in porous media reveal only a small percentage of the biomass to be in direct contact with the mineral surface, allowing mineral chemistry to be predominantly controlled by mineral surface reactivity, rather than by a diffusion-limited mineral-biofilm-solution interface. This is true even when a mineral surface is apparently completely covered by biofilm. The alteration of mineral surface drastically increases the kinetics of surface-coordinated trace metal precipitate formation by providing nucleation sites upon extracellular biopolymers and cell wall polymers. Over geological time-scales, these processes, particularly the formation of thermodynamically stable pore-blocking mineral precipitates, are envisaged to markedly change the flow paths, flow rates and interaction of migrating geofluids (water, petroleum, ore-forming solutions) with minerals and rocks.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3