Shear zone folds: records of flow perturbation or structural inheritance?

Author:

Alsop G. I.1,Holdsworth R. E.2

Affiliation:

1. Crustal Geodynamics Group, School of Geography & Geosciences, University of St Andrews St Andrews, Fife, Scotland KY16 9AL, UK gia@st-andrews.ac.uk

2. Reactivation Research Group, Department of Earth Sciences, University of Durham Durham, DH1 3LE, UK

Abstract

AbstractDeformation within shear zones can be both temporally and spatially variable, resulting in multiple generations of folds which display a range of scales and overprinting relationships in mylonitic rocks associated with high strain zones. Despite such complexities, two main fold associations are broadly recognized in many shear zone settings: early tight to isoclinal sheath folds, often with mylonitic limbs that are post-dated by one or more local generations of synshearing folds which are preserved within, or root downwards into mylonitic high strain zones. These latter structures locally fold the mylonitic foliation and lineation whilst displaying geometric characteristics that are kinematically compatible with the movement regime of the major shear zone. Using examples related to ductile thrusting in Moine metasediments of north Scotland, we show that both types of fold display predictable geometric patterns on fabric topology plots. Fold axes and axial surfaces display consistent changes in asymmetry and sense of obliquity relative to local, transport-parallel mineral lineations that can be used to map out a series of culminations and depression zones. The sheath folds preserve more acute, but almost identical geometric patterns compared to the later synshearing folds, with culmination and depression zones often coinciding in location and scale. Detailed analysis also demonstrates that the distribution of finite strain is systematically linked to the architecture of all folds and that clear and predictable relationships exist between the fabric topologies of both the sheath folds and synshearing folds. These consistent topological relationships could be explained in terms of a fold evolution model, where sheath folds represent a more highly deformed and evolved variety of synshearing folds originally generated during perturbations in ductile flow. However, an alternative fold inheritance model predicts that the gross structural architecture generated during sheath folding may subsequently control the geometry and govern the orientation of the synshearing folds. Both models may be widely applicable in a broad range of shear zone environments.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3