Affiliation:
1. Middle East Technical University, Department of Geological Engineering, Tectonic Research Unit
TR-06531 Ankara, Turkeyerdin@metu.edu.tr
Abstract
AbstractThe Büyük Menderes Graben is one of the most prominent structures of western Anatolia (Turkey) and borders the Aegean. New structural and stratigraphic evidence demonstrates that the (?)Miocene fluvio-lacustrine, coal-bearing red clastic sediments exposed along the northern margin of the graben are northward back-tilted, locally folded and overlain unconformably by horizontal terraced Pliocene-Pleistocene sediments. Also, there is no evidence that these red clastics at the base of the Neogene sequence were deposited during neotectonic extension. It is suggested here that these sediments cannot be regarded as passive neotectonic graben-fill deposits.This new evidence further indicates that the age of the modern Büyük Menderes Graben is Pliocene, younger than previously considered (Early-Middle Miocene) and that initiation of north-south neotectonic extensional tectonics in the graben, and thus in western Anatolia, is unlikely to have resulted from orogenic collapse. The Pliocene estimate of the start of extension is in close agreement with the start of slip on the North Anatolian Fault Zone. The north-south extensional tectonics, and associated east-west faulting and basin formation, commenced during the Pliocene due to the effect of westward tectonic escape of the Anatolian block along the North and East Anatolian Faults. New mammal evidence also constrains the start of slip on the younger faults which bound the present-day graben floor to c. 1 Ma.The Büyük Menderes Graben has experienced a two-stage extension. An initial extension (latest Oligocene-Early Miocene) along initially moderately, steeply dipping normal faults was superseded by movement on steeper normal faults during the (?)Pliocene. The two phases of deformation appear to reflect significant changes in the tectonic setting of western Anatolia and are attributed to orogenic collapse followed by tectonic escape.
Publisher
Geological Society of London
Subject
Geology,Ocean Engineering,Water Science and Technology
Cited by
171 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献