The geochemical behaviour of Tc, Np and Pu in spent nuclear fuel in an oxidizing environment

Author:

Buck Edgar C.1,Hanson Brady D.1,McNamara Bruce K.1

Affiliation:

1. Pacific Northwest National Laboratory Richland, Washington, 99352, USA edgar.buck@pnl.gov

Abstract

AbstractSpent fuel from commercial nuclear reactors consists mainly of uranium oxide. However, the changes that occur during reactor operations have a profound effect on chemical and physical properties of this material. Heat build-up in the fuel pellet during reactor operations can cause redistribution of fission products. The fission products may aggregate in one of three types of precipitates; gaseous, metallic, or oxide, depending on the burn-up and in-core treatment. Radiation damage and variations in fission and neutron capture yields across the fuel pellets lead to Pu enrichment and increased porosity with increasing burn-up. A more porous surface may make the fuel more susceptible to oxidative dissolution. As the level of actinides and fission products increases, the fuel may become more resistant to oxidation. These changes may limit the usefulness of natural uraninite (UO2) analogues for predicting the geological behaviour of spent fuel disposed in a high-level waste (HLW) repository. In this Chapter, an overview of spent fuel microstructure, radiolytic effects, and alteration processes is presented. Evidence for Np incorporation into U6+ phases, the nature of Pu surface precipitates on spent fuel, and evidence for the preferential removal of 4d-metals from ε-particles in corroded spent fuel is discussed. Understanding the potential mechanisms of radionuclide attenuation through sorption and/or incorporation requires techniques with both high spatial resolution and excellent elemental sensitivity.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3