The role of hydrogeological and geochemical trapping in sedimentary basins for secure geological storage of carbon dioxide

Author:

Gunter William D.1,Bachu Stefan2,Benson Sally3

Affiliation:

1. Alberta Research Council Edmonton, Alberta, T6N 1E4, Canada gunter@arc.ab.ca

2. Alberta Geological Survey Edmonton, Alberta, T6B 2X3, Canada

3. Lawrence Berkeley National Laboratories Berkeley, California, 94720, USA

Abstract

AbstractSedimentary basins throughout the world are thick piles of lithified sediments that, in many cases, are the hosts for fossil fuel resources. They may become even more important in the future if they are used for the storage of anthropogenic carbon dioxide. The efficiency of CO2 geological storage is determined by the structure of the sedimentary basins, which have an intricate plumbing system defined by the location of high and low permeability strata that control the flow of fluids throughout the basin and define ‘hydrogeological’ traps. The most secure type of hydrogeological trapping is found in ‘stratigraphic’ and ‘structural’ traps in oil and gas reservoirs that have held oil and gas for millions of years. Another form of hydrogeological trapping is ‘hydrodynamic’ trapping which has been recognized in saline aquifers of sedimentary basins that have extremely slow flow rates. A volume of carbon dioxide injected into a deep hydrodynamic trap may take millions of years to travel by buoyancy forces updip to reach the surface before it leaks back into the atmosphere. Moreover, as the carbon dioxide migrates towards the surface, it dissolves in the surrounding brine (‘solubility’ trapping) and may react geochemically with rock minerals to become permanently trapped in the sedimentary basin by ‘ionic’ or ‘mineral’ trapping. The efficiency of the CO2 geological storage in sedimentary basins depends on many factors, among the most important being CO2 buoyancy, formation water density, lithological heterogeneity and mineralogy. A risk analysis must be completed for each site chosen for the geological storage of CO2 to evaluate the trapping security.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3