An inverse cascade explanation for the power-law frequency-area statistics of earthquakes, landslides and wildfires

Author:

Malamud Bruce D.1,Turcotte Donald L.2

Affiliation:

1. Environmental Monitoring and Modelling Research Group, Department of Geography, King’s College London Strand, London WC2R 2LS, UK bruce@malamud.com

2. Department of Geology, University of California Davis, CA, 95616, USA turcotte@geology.ucdavis.edu

Abstract

AbstractFrequency-magnitude statistics for natural hazards can greatly help in probabilistic hazard assessments. An example is the case of earthquakes, where the generality of a power-law (fractal) frequency-rupture area correlation is a major feature in seismic risk mapping. Other examples of this power-law frequency-size behaviour are landslides and wildfires. In previous studies, authors have made the potential association of the hazard statistics with a simple cellular-automata model that also has robust power-law statistics: earthquakes with slider-block models, landslides with sandpile models, and wildfires with forest-fire models. A potential explanation for the robust power-law behaviour of both the models and natural hazards can be made in terms of an inverse-cascade of metastable regions. A metastable region is the region over which an ‘avalanche’ spreads once triggered. Clusters grow primarily by coalescence. Growth dominates over losses except for the very largest clusters. The cascade of cluster growth is self-similar and the frequency of cluster areas exhibits power-law scaling. We show how the power-law exponent of the frequency-area distribution of clusters is related to the fractal dimension of cluster shapes.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Reference46 articles.

1. A probabilistic synthesis of precursory phenomena;Aki,1981

2. Self-organized criticality

3. A forest-fire model and some thoughts on turbulence;Bak;Physics Letters A,1990

4. Model and theoretical seismicity;Burridge;Seismological Society of America Bulletin,1967

5. Mechanical model of an earthquake fault

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3