FTIR remote sensing of fractional magma degassing at Mount Etna, Sicily

Author:

Burton M.1,Allard P.12,Murè F.1,Oppenheimer C.3

Affiliation:

1. Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania Catania, Italy

2. Laboratoire Pierre Süe, CNRS-CEA Gif-sur-Yvette, France

3. Department of Geography, University of Cambridge Downing Place, Cambridge, CB2 3EN, UK

Abstract

AbstractThe chemical composition of volcanic gas emissions from each of the four summit craters of Mount Etna was measured remotely in May 2001, using a Fourier transform infrared (FTIR) spectrometer operated on the upper flanks of the volcano. The results reveal constant HCl/HF ratio but distinct SO2/HCl and SO2/HF ratios in the emitted gases, which, in the light of melt inclusion data for Etna basalts, can be interpreted in terms of escape of gases from partially, and variably, degassed magma at different depths beneath the summit. Gases released from the three main summit craters (Bocca Nuova, Voragine, and Northeast) had an identical composition, controlled by bulk degassing of a single magma body that had previously lost c. 25% of its original sulphur. The similar gas composition at all three main craters suggests that these are connected to a central conduit system that branches at relatively shallow depth. Measurements of the bulk volcanic plume on the same day, c. 7 km downwind, show that degassing from these craters dominated the total gas output of the volcano, and that no significant chemical evolution occurred within the plume over a time-scale of c. 12 min. Weaker gas emissions from the Southeast crater were comparatively depleted in SO2 (SO2/HCl and SO2/HF ratios a factor of two lower), implying that this crater is fed either by a separate conduit or by a branch of the central conduit whose geometry favours solubility-controlled volatile fractionation. Still lower SO2/HCl and SO2/HF ratios measured for residual degassing of a lava flow erupted from the Southeast crater verify the lower solubility and earlier escape of sulphur compared to halogens at Etna. Fractional magma degassing is also implied by strong chemical contrasts between the bulk volcanic plume and fissure gas emissions measured during the July-August 2001 flank eruption. These results highlight the ability of FTIR spectrometry to detect fine spatial and temporal variations in magma degassing processes, and thereby constrain models of shallow plumbing systems.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Reference43 articles.

1. Mobility and fluxes of major, minor and trace metals during basalt weathering and groundwater transport at Mt. Etna volcano (Sicily)

2. Allard P. (1986) Géochimie isotopique et origine de l’eau, du carbone et du soufre dans les gaz volcaniques: zones de rift, marges continentales et arcs insulaires. State Thesis (Paris 7 University).

3. Endogenous magma degassing and storage at Mount Etna

4. Allard P. Métrich N. (1999) CNFGG Report to IUGG, XXII General Assembly, Birmingham, Dégazages magmatiques et flux volcaniques. Rôle de l’eau, July 18 to 30, pp 103–109.

5. Eruptive and diffuse emissions of CO2 from Mount Etna

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3