Affiliation:
1. Rock Deformation Research Ltd, School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK (e-mail: quentin@rdr.leeds.ac.uk)
Abstract
AbstractTo investigate the interaction between the rheology of arenaceous sedimentary rocks (sand and sandstone) and stress conditions during burial we have coupled published results from deformation experiments with a simple quartz cementation model. The model provides valuable insights into controls on sandstone deformation consistent with observations from nature. A transitional zone exists in subsiding sedimentary basins, here referred to as the ductile-to-brittle transition (DBT), above which faults in normally pressured arenites will tend to form fluid flow barriers, and below which they will tend to form conduits. The DBT depth in sandstone is dependent upon geothermal gradient, burial rate and grain size. Low geothermal gradients, rapid sedimentation rates and coarse grain sizes favour a deep DBT and vice versa. Fine-grained arenites may only deform in a brittle manner for most natural burial rates and geothermal gradients, explaining why they do not usually contain thick deformation band zones. Coarser-grained arenites may deform in a brittle–ductile or ductile manner, which is why they often contain thick deformation band zones and occasionally experience pervasive porosity collapse. Sandstones within high geothermal gradient areas may deform to produce fluid flow conduits at shallow depths when porosities in the sequence as a whole are high; this possibly favours fault-related mineralization.
Publisher
Geological Society of London
Subject
Geology,Ocean Engineering,Water Science and Technology
Reference49 articles.
1. Effect of faulting on fluid flow in porous sandstones: geometry and spatial distribution;Antonellini;AAPG Bulletin,1995
2. A review of techniques used to determine geological and thermal history in the Southern North Sea;Archard,1998
3. Small faults formed as deformation bands in sandstone
4. Fluid flow along potentially active faults in crystalline rock
5. Failure mode and weakening effect of water on sandstone
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献