Influence of grain size and geothermal gradient on the ductile-to-brittle transition in arenaceous sedimentary rocks: implications for fault structure and fluid flow

Author:

Fisher Q. J.1,Harris S. D.1,Casey M.1,Knipe R. J.1

Affiliation:

1. Rock Deformation Research Ltd, School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK (e-mail: quentin@rdr.leeds.ac.uk)

Abstract

AbstractTo investigate the interaction between the rheology of arenaceous sedimentary rocks (sand and sandstone) and stress conditions during burial we have coupled published results from deformation experiments with a simple quartz cementation model. The model provides valuable insights into controls on sandstone deformation consistent with observations from nature. A transitional zone exists in subsiding sedimentary basins, here referred to as the ductile-to-brittle transition (DBT), above which faults in normally pressured arenites will tend to form fluid flow barriers, and below which they will tend to form conduits. The DBT depth in sandstone is dependent upon geothermal gradient, burial rate and grain size. Low geothermal gradients, rapid sedimentation rates and coarse grain sizes favour a deep DBT and vice versa. Fine-grained arenites may only deform in a brittle manner for most natural burial rates and geothermal gradients, explaining why they do not usually contain thick deformation band zones. Coarser-grained arenites may deform in a brittle–ductile or ductile manner, which is why they often contain thick deformation band zones and occasionally experience pervasive porosity collapse. Sandstones within high geothermal gradient areas may deform to produce fluid flow conduits at shallow depths when porosities in the sequence as a whole are high; this possibly favours fault-related mineralization.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Reference49 articles.

1. Effect of faulting on fluid flow in porous sandstones: geometry and spatial distribution;Antonellini;AAPG Bulletin,1995

2. A review of techniques used to determine geological and thermal history in the Southern North Sea;Archard,1998

3. Small faults formed as deformation bands in sandstone

4. Fluid flow along potentially active faults in crystalline rock

5. Failure mode and weakening effect of water on sandstone

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3