Convective heat transfer in a steeply dipping fault zone and its impact on the interpretation of fission-track data - a modelling study

Author:

Timar-Geng Zoltan1,Henk Andreas1,Wetzel Andreas2

Affiliation:

1. Geologisches Institut, Albert-Ludwigs-Universität Freiburg, Albertstrasse 23b, D-79104 Freiburg, Germany

2. Geologisch-Paläontologisches Institut, Universität Basel, Bernoullistrasse 32, CH-4056 Basel, Switzerland

Abstract

AbstractThe effects of convective heat transfer by hydrothermal fluid flow on fission-track (FT) thermochronology are studied using numerical modelling techniques. Parameter studies are carried out on two-dimensional crustal segments with a steeply dipping fault zone exposed to constant denudation to evaluate the relative importance of different variables, including denudation rate as well as hydraulic and material properties. Time–temperature histories of particle points are calculated in the vicinity and also a few kilometres away of the fault zone. These time–temperature paths are then used in a forward-modelling approach to determine the expected FT cooling ages and track-length distributions.Modelling results indicate that hydrothermal fluid flow can significantly disturb the background conductive thermal state of the upper crust, and the interpretation of FT data using a steady-state geothermal gradient can result in erroneous denudation rates that overestimate the true erosion rates by more than 80%. A pattern of highly varied FT cooling ages from samples at the same elevation does not necessarily ask for differential tectonic movements, instead it can be generated by deep circulation of groundwater within a few million years (Ma). Denudation rates inferred from FT cooling age–elevation plots are likewise inaccurate in a hydrothermally active area because the important assumption about closure temperature isotherms being horizontal or at a constant depth below the surface is not met.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3