The boundaries of the West African craton, with special reference to the basement of the Moroccan metacratonic Anti-Atlas belt

Author:

Ennih Nasser1,Liégeois Jean-Paul2

Affiliation:

1. Geodynamic Laboratory, El Jadida University, BP. 20, 24000, El Jadida, Morocco (e-mail: ennih@ucd.ac.ma)

2. Isotope Geology, Royal Museum for Central Africa, B-3080 Tervuren, Belgium (e-mail: jean-paul.liegeois@africamuseum.be)

Abstract

AbstractThe West African craton (WAC) was constructed during the Archaean and the c. 2 Ga Palaeoproterozoic Eburnian orogeny. Mesoproterozoic quiescence at c. 1.7–1.0 Ga allowed cratonization. In the absence of Mesoproterozoic activity, there are no known WAC palaeogeographical positions for that time. At the beginning of the Neoproterozoic, the WAC was affected by several extensional events suggesting that it was subjected to continental breakup. The most important event is the formation of the Gourma aulacogen in Mali, and the Taoudeni cratonic subcircular basin and deposition of platform sediments in the Anti-Atlas. At the end of the Neoproterozoic, the WAC was subjected to convergence on all its boundaries, from the north in the Anti-Atlas, to the east along the Trans-Saharan belt, to the south along the Rockelides and the Bassarides and to the east along the Mauritanides. This led to a partial remobilization of its cratonic boundaries giving rise to a metacratonic evolution. The WAC boundaries experienced Pan-African Neoproterozoic to Early Cambrian transpression and transtension, intrusion of granitoids and extrusion of huge volcanic sequences in such as in the Anti-Atlas (Ouarzazate Supergroup). Pan-African tectonism generated large sediment influxes around the WAC within the Peri-Gondwanan terranes whose sedimentary sequences are marked by distinctive zircon ages of 1.8–2.2 Ga and 0.55–0.75 Ga.WAC rocks experienced Pan-African low grade metamorphism and large movements of mineralizing fluids. In the Anti-Atlas, this Pan-African metacratonic evolution led to remobilization of REE in the Eburnian granitoids due to the activity of F-rich fluids linked to extrusion of the Ouarzazate Supergroup. During the Phanerozoic, the western WAC boundary was subjected to the Variscan orogeny, for which it constituted the foreland and was, therefore moderately affected, showing typical thick-skin tectonics in the basement and thin-skin tectonics in the cover. During the Mesozoic, the eastern and southern boundaries of the WAC were subjected to the Atlantic opening including Jurassic dolerite intrusion and capture of its extreme southern tip by South America. The Jurassic is also marked by the development of rifts on its eastern and northern sides (future Atlas belt). Finally, the Cenozoic period was marked by the convergence of the African and European continents, generating the High Atlas range and Cenozoic volcanism encircling the northern part of the WAC. The northern metacratonic boundary of the WAC is currently uplifted, forming the Anti-Atlas Mountains.The boundaries of the WAC, metacratonized during the Pan-African orogeny have been periodically rejuvenated. This is a defining characteristic of the metacratonic areas: rigid, stable cratonic regions that can be periodically cut by faults and affected by magmatism and hydrothermal alteration – making these areas important for mineralization.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3