Supercontinent integrity between 0.8 and 0.6 Ga: the nemesis of Rodinia?

Author:

Piper J. D. A.1

Affiliation:

1. Geomagnetism Laboratory, Geology and Geophysics, School of Environmental Sciences, University of Liverpool, Liverpool L69 7ZE, UK (e-mail: sg04@liverpool.ac.uk)

Abstract

AbstractThe view that the pre-Phanerozoic continental crust records transient supercontinent cycles separated by intervals of diverse shield motion has dominated interpretation of the Precambrian aeon. Of two separated supercontinent intervals, the latter, ‘Rodinia’, is considered to result from Meso-Neoproterozoic accretion and progressive dismemberment by fragmentation after c. 0.9 Ga. Although the present palaeomagnetic database does not permit this premise to be reliably tested by diverse relative movements, the alternative proposition that the crust comprised a quasi-integral lid during pre-Phanerozoic history is eminently testable because it demands conformity of poles to a single position or otherwise to a single apparent polar wander path (APWP). In the event, palaeomagnetic poles assigned to 0.8–0.6 Ga conform to a single (‘Franklin–Adelaide’) APW Track merging into a long interval (c. 0.75–0.6 Ga) of near-static polar behaviour employing reconstruction parameters derived from pre-0.8 Ga data. This is supported by a robust independent indicator, namely the history of rifting to drifting at c. 0.6 Ga as predicted from the subsidence histories of early Palaeozoic passive margins. Multiple environmental changes near the Precambrian–Cambrian boundary correlate with this transition. Evidence demonstrating that continental crust comprised a quasi-integral lid at 0.8–0.6 Ga with break-up confined to the Ediacaran Period is summarized. The Rodinia hypothesis postulating prolonged break-up from a contrasting reconstruction is shown to be fundamentally flawed and should now be discarded.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3