Petroleum source-rock characterization and the depositional environment of Kimmeridgian–Tithonian sequences, Jaisalmer Basin, western Rajasthan, India

Author:

Kumar Dinesh12,Sharma Ravi1ORCID,Maurya Abhayanand Singh1,Pandey Rajesh2

Affiliation:

1. Department of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India

2. Frontier Basins, Oil and Natural Gas Corporation Ltd, Dehradun, Uttarakhand 248195, India

Abstract

In hydrocarbon exploration, total organic carbon (TOC) content and Rock-Eval pyrolysis are commonly employed geochemical techniques that offer concise insights into kerogen type, effective source-rock identification and thermal maturity. In the current study, the data obtained from Rock-Eval pyrolysis has been used to define the source-rock quality, generative potential, kerogen type, maturity of the source sediments and kerogen kinetics of the Baisakhi–Bhadesar Formation of Kimmeridgian–Tithonian (154.7–145.6 Ma) age. Basinal level hydrogen index (HI), TOC content, source-rock maturity, transformation ratio and heat-flow maps have been generated by integrating the data from pyrolysis with previously available data from wells drilled in the basin. The TOC content of the Kimmeridgian–Tithonian sequence ranges from 0.03 to 12.71% in the studied samples, with an average TOC content of 1.28%, indicating good source-rock quality. The HI, in collaboration with T max and vitrinite reflectance (VR o ) data, demonstrates that the Baisakhi–Bhadesar Formation is characterized by type II, a mixture of type II/III and type III kerogen facies and exhibits good source-rock quality and poor to good generative potential in the basin. The studied samples are marginally mature to mature in nature ( T max , 430–450°C; VR o , 0.52–0.72%). A maturity analysis of the basin suggests that during the Late Jurassic most areas were under the oil window zone, except for the Bhakhari Tibba and Miajlar areas. The transformation ratio overlay for the Kimmeridgian–Tithonian source sequences shows better transformations of the source rock in the area of the Shagarh Sub-basin. Kerogen kinetics of the studied Baisakhi–Bhadesar Formation demonstrate that the activation energy ranges between 46 and 74 kcal mol −1 with the significant distribution of activation energy being 54 kcal mol −1 (42.07%), representing a strong heterogeneous type of organic matter in the sediments. Based on lithological, palaeontological and electrolog studies, a shallow-marine to nearshore environment of deposition with a sediment-input direction from the SE has been inferred for the Kimmeridgian–Tithonian sequences. The results of this study quantitatively establish the role of the Kimmeridgian–Tithonian sequence as a source rock, ultimately contributing to the generation of hydrocarbons in the basin along with spatial changes in the quality of source sediments in different parts of the basin.

Publisher

Geological Society of London

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3