The influence of salt tectonics on the distribution of the Triassic Skagerrak Formation in the Ula Field, Norwegian North Sea

Author:

Di Lauro Lorenzo1ORCID,Hartley Adrian J.1,Duncan Jonathan2,Rosseland Knutsen Eirik2,Howell John1,Jolley David1

Affiliation:

1. Department of Geology and Geophysics, University of Aberdeen, Aberdeen, UK

2. Aker BP, Stavanger, Norway

Abstract

Distribution of the Triassic succession in the North Sea is poorly understood because of structural complexities associated with halokinesis and limited stratigraphic control. This study uses a seismic and well-based dataset to improve understanding of development of the Triassic succession in the Ula Field Area, in the Norwegian North Sea. Core interpretation revealed a fluvial-dominated depositional environment in the Ula Field Area. Palynological studies allowed dating of cored intervals, revealing Ladinian and Carnian sections, time-equivalent to the Julius and Joanne members of the Skagerrak Formation. Well-log interpretation provided insight into the intra-Triassic stratigraphy of the Ula Field Area. A section considered to be equivalent to and extending from the Smith Bank Formation to the Jonathan Member of the Skagerrak Formation was interpreted and correlated across the area. In the proposed correlation, the Julius Member thins towards the Ula Field Area and is replaced by a time equivalent sandstone unit. The Jonathan Member displays a sandier composition compared to the equivalent section in the UK sector. Seismic facies-based interpretation of Triassic stratigraphy within salt minibasins allowed recognition and mapping of intra-Triassic units and showed that mudstone members thin towards the NE. Interpreted internal geometries within minibasins allowed determination of the timing of halokinesis. Integration of different datasets allowed palaeogeographic reconstructions for the Anisian, early Ladinian, Carnian and Norian to be constructed. To conclude, the distribution of stacked fluvial channel deposits indicates that they occur both within minibasins and across salt highs such that ongoing halokinesis had no topographic expression and that channels were free to migrate across the area.

Funder

Aker BP

DNO

Publisher

Geological Society of London

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3