The role of creep in geopressure development

Author:

You Kehua1ORCID,Flemings Peter12ORCID,Bhandari Athma R.1ORCID,Heidari Mahdi3ORCID,Germaine John4

Affiliation:

1. Institute for Geophysics, University of Texas at Austin, 10100 Burnet Road, Austin, TX 78758, USA

2. Department of Geological Sciences, University of Texas at Austin, Austin, TX 78712, USA

3. Bureau of Economic Geology, University of Texas at Austin, 10100 Burnet Road, Austin, TX 78758, USA

4. Department of Civil and Environmental Engineering, Tufts University School of Engineering, 200 College Ave, Medford, MA 02155, USA

Abstract

This study developed a one-dimensional numerical model of sedimentation and compaction based on the equivalent isochrone framework to investigate the impact of creep on geopressure during burial. In this framework, the void ratio is a function of effective stress and strain rate; the change in void ratio is the same with each order of magnitude decrease in strain rate at a constant effective stress. We simulated lower void ratio and higher overpressure when creep was included compared to cases where no creep was present and void ratio is only a function of effective stress. Creep causes apparent overconsolidation. The apparent overconsolidation ratio is used to quantify the magnitude of creep; this is the vertical distance from the normal compression curve in a void ratio v. effective stress plot. The magnitude of creep depends on the loading rate, and increases with depth at sites with low sedimentation rates. These findings bridge the gap between laboratory and field observations on rock compression behaviours. For example, it provides one explanation why laboratory-derived compression curves have a higher void ratio at a given effective stress. In addition, it suggests under what conditions the rock will behave elastically. Thematic collection: This article is part of the Geopressure collection available at: https://www.lyellcollection.org/cc/geopressure

Publisher

Geological Society of London

Subject

Earth and Planetary Sciences (miscellaneous),Economic Geology,Geochemistry and Petrology,Geology,Fuel Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3