The Rossano–San Nicola Fault Zone evolution impacts the burial and maturation histories of the Crotone Basin, Calabrian Arc, Italy

Author:

Mangano Giacomo12ORCID,Alves Tiago M.3,Zecchin Massimo2,Civile Dario2,Critelli Salvatore1

Affiliation:

1. Department of Environmental Engineering, University of Calabria, via Pietro Bucci, 87036 Arcavacata di Rende, Cosenza, Italy

2. National Institute of Oceanography and Applied Geophysics – OGS, Borgo Grotta Gigante, 42/c, 34010 Sgonico, Trieste, Italy

3. 3D Seismic Laboratory, School of Earth and Environmental Sciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK

Abstract

This work addresses the tectonic significance of a NW–SE-trending strike-slip fault zone in the Calabrian Arc of southern Italy, the Rossano–San Nicola Fault Zone (RSFZ). High-quality seismic reflection and 1D forward models of exploration boreholes and pseudo-wells show that the RSFZ experienced multiple Miocene phases of contractional/transpressional tectonics. These were followed by crustal extension during the Pliocene, which occurred in association with the oceanization of the Tyrrhenian Sea, Apennine orogenesis, and collision between the Calabrian Arc and adjacent tectonic plates. Such a setting had a profound influence on the Crotone Basin and its economic potential: (1) tectonic reactivation allowed reservoir units of the Crotone Basin to be charged by gas derived from Triassic/Lower Jurassic source rocks; and (2) source rocks reached their maximum depth and remained in the gas generation window after the emplacement of a large mass-transport complex in the Pliocene. In the surrounding areas, tectonic activity near the RSFZ contributed to source-rock maturation by enhancing local sedimentation rates, particularly during Langhian (Middle Miocene) and Zanclean (early Pliocene) tectonics. This work is important as it demonstrates that the tectonostratigraphic evolution of the Crotone Basin was closely related to the structural evolution of the RSFZ. Crucially, the study area reveals the first example of a gas field fully sealed by a large mass-transport complex. As a corollary, we tie the Late Cenozoic geological history of the Crotone Basin to the geodynamic evolution of the central Mediterranean region, namely the Ionian and Tyrrhenian seas. We identify new prospects in the Crotone Basin, and provide a time frame for gas generation and accumulation in southern Italy.

Publisher

Geological Society of London

Subject

Earth and Planetary Sciences (miscellaneous),Economic Geology,Geochemistry and Petrology,Geology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3