Gas permeability change with deformation and cracking of a sandstone under triaxial compression

Author:

Lin Yuan-Jian12,Liu Jiang-Feng12ORCID,Chen Tao3,Huang Bing-Xiang4,Ma Shi-Jia1,Bai Hai-Bo1

Affiliation:

1. The State Key Laboratory for GeoMechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China

2. Yunlong Lake Laboratory of Deep Earth Science and Engineering, Xuzhou, Jiangsu 221116, China

3. Exploration and Development Research Institute, Shengli Oilfield, SINOPEC, Dongying, Shandong 257015, China

4. State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China

Abstract

In this study, a thermal–hydraulic–mechanical–chemical (THMC) multi-field coupling triaxial cell was used to study systematically the evolution of gas permeability and the deformation characteristics of sandstone. The effects of confining, axial and gas pressure on gas permeability characteristics were fully considered in the test. The gas permeability of sandstone decreases with increasing confining pressure. When the confining pressure is low, the variation of gas permeability is greater than that of gas permeability at high confining pressure. The gas injection pressure significantly affects the gas permeability evolution of sandstone. As the gas injection pressure increases, the gas permeability of sandstone tends to decrease. At the same confining pressure, the gas permeability of the sample during the unloading path is less than the gas permeability of the sample in the loading path. When axial pressure is applied, it has a significant influence on the permeability evolution of sandstone. When the axial pressure is less than 30 MPa, it significantly influences the permeability evolution of sandstone. At axial pressures greater than 30 MPa, the permeability decreases as the axial pressure increases. Finally, the micro-pore/fracture structure of the sample after the gas permeability test was observed using 3D X-ray CT imaging.

Funder

The authors are grateful for the support of the National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Geological Society of London

Subject

Earth and Planetary Sciences (miscellaneous),Economic Geology,Geochemistry and Petrology,Geology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3