Computational modelling of the transient dynamics of the August 1997 Vulcanian explosions at Soufrière Hills Volcano, Montserrat: influence of initial conduit conditions on near-vent pyroclastic dispersal

Author:

Clarke A. B.1,Neri A.2,Voight B.1,Macedonio G.3,Druitt T. H.4

Affiliation:

1. Department of Geosciences, Penn State UniversityUniversity Park, PA 16802, USA (aclarke@geosc.psu.edu)

2. CNR-CSGSDA, Department of Earth SciencesPisa, Italy

3. Osservatorio VesuvianoNapoli, Italy

4. Laboratoire Magmas et Volcans, Université Blaise Pascal et CNRSClermont-Ferrand 63038, France

Abstract

AbstractThis paper presents numerical models of the Vulcanian explosions that occurred in 1997 at Soufrière Hills Volcano. Plume evolution and velocities were calculated for the well-documented and typical explosions of 6 and 7 August 1997, and these data and other observations were compared to transient, axisymmetric, multiphase flow simulations of coupled conduit evacuation and pyroclastic dispersal. Pre-explosion conduit conditions were estimated from Montserrat data, using a simple gas solubility law and assuming that conduit magma flow had stagnated with a constant overpressure prior to the explosions. Reference simulation input parameters include conduit diameter of 30 m, crater diameter of 300 m, meltwater content of 4.3±0.5°, grain sizes of 30, 2000 and 5000 µm, and conduit overpressure of l0MPa. The numerical simulations of the explosions resolved highly unsteady vent exit conditions such as velocity, pressure and mass flux, and the spatial and temporal dispersal of pyroclasts during the initial few minutes was investigated using one gas phase and two or three solid phases representing pyroclasts of different size. Our simulations produced transitional eruptive regime behaviour, dividing the erupted mass into a portion that generated a radial pyroclastic current fed by a collapsing column, and a convective portion that generated a buoyant plume. This behaviour generally mimicked the observed explosions. The movement of different particle sizes was tracked, with fine particles dominantly influencing the convective behaviour of the central plume and ash plume thermals generated above the pyroclastic currents. Simulated initial vent velocities ranged from 85 to 120ms-1, collapse heights ranged from 450 to 1370 m above the vent, initial pyroclastic current velocities ranged from 40 to 60 ms-1 with surge runouts to 1.8 km, drawdown depths in the conduit were a few hundred metres, and simulated pyroclastic current deposit temperatures ranged between 135 and 430°C. Subsets of these results are in reasonable agreement with observed and measured parameters of the 1997 explosions. The best match was intermediate between our reference simulation, which assumed no loss of volatiles from the conduit during rise from the magma reservoir and which appeared too energetic, and another simulation in which much volatile leakage was assumed. The results suggest that volatile depletion in the conduit was an important factor in influencing the dynamic behaviour of the Vulcanian explosions on Montserrat.

Publisher

Geological Society of London

Subject

Geology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3