Affiliation:
1. Department of Earth, Material, and Planetary Sciences, Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238-5166, USA
Abstract
AbstractAnalyses of normal faults in mechanically layered strata reveal that material properties of rock layers strongly influence fault nucleation points, fault extent (trace length), failure mode (shear v. hybrid), fault geometry (e.g. refraction through mechanical layers), displacement gradient (and potential for fault tip folding), displacement partitioning (e.g. synthetic dip, synthetic faulting, fault core displacement), fault core and damage zone width, and fault zone deformation processes. These detailed investigations are progressively dispelling some common myths about normal faulting held by industry geologists, for example: (i) that faults tend to be linear in dip profile; (ii) that imbricate normal faults initiate due to sliding on low-angle detachments; (iii) that friction causes fault-related folds (so-called normal drag); (iv) that self-similar fault zone widening is a direct function of fault displacement; and (v) that faults are not dilational features and/or important sources of permeability.
Publisher
Geological Society of London
Subject
Geology,Ocean Engineering,Water Science and Technology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献