Tectonostratigraphic evolution of the c. 780–730 Ma Beck Spring Dolomite: Basin Formation in the core of Rodinia

Author:

Smith Emily F.1,MacDonald Francis A.1,Crowley James L.2,Hodgin Eben B.1,Schrag Daniel P.1

Affiliation:

1. Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA

2. Department of Geosciences, Boise State University, Boise, ID 83725, USA

Abstract

AbstractThe Beck Spring Dolomite is a mixed carbonate–siliciclastic succession exposed in Death Valley, California, that was deposited between 780 and 717 Ma. Along with its bounding units, the Horse Thief Springs Formation below and unit KP1 of the Kingston Peak Formation above, the Beck Spring Dolomite were deposited in one of the ChUMP (Chuar–Uinta Mountains–Pahrump) basins with subsidence commonly attributed to the nascent rifting of Rodinia. These pre-Sturtian successions preserve eukaryotic microfossil assemblages, diverse microbialites, and large carbon isotope anomalies directly below Sturtian-age glacial deposits. Here we present new geological mapping, measured stratigraphic sections, carbon isotope chemostratigraphy and detrital zircon geochronology from the Beck Spring Dolomite and its bounding units. The carbon isotope excursion at the top of the Beck Spring Dolomite has previously been attributed to meteoric diagenesis associated with karst breccias, but here we demonstrate that these breccias are instead mass flow deposits that formed during deposition of the Kingston Peak Formation and that the carbon isotope excursion is not only reproducible throughout the basin, but is associated with transgression rather than regression and exposure. In addition, we refine local correlations and discuss the use of chemostratigraphic curves from these units for regional and global correlations. The Beck Spring Dolomite was deposited during the second of three distinct basin-forming events recorded in the Pahrump Group with basin inversion occurring between each event. The presence of syn-sedimentary faults, the character of the lateral facies change and detrital zircon provenance analyses indicate that the Beck Spring Dolomite fringed a coeval palaeo-high to the south in a tectonically active basin. Detrital zircon age distributions in the Beck Spring Dolomite show sharp probability peaks at c. 1200, 1400 and 1800 Ma, consistent with local sources to the SW in the Mojave block rather than transcontinental rivers. The c. 1800 Ma probability peak is less prominent in the KP1 samples. In addition, KP1 also records slump folding and is overlain by an unconformity. We suggest that these features are consistent with the emergence of a local fault to the NE. Deposition of the Beck Spring Dolomite and bounding units do not record evidence of incipient rifting of the western margin of Laurentia but instead reflect a distinct and separate tectonothermal event.Supplementary material:Carbon (δ13C) and oxygen (δ18O) isotopic measurements, detrital zircon laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) data, detrital zircon sample information and data from reference materials used for LA-ICPMS analyses are available at http://www.geolsoc.org.uk/SUP18823.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3