Revisiting the last major eruptions at Stromboli volcano: inferences on the role of volatiles during magma storage and decompression

Author:

Cigolini C.12,Laiolo M.1,Coppola D.1

Affiliation:

1. Dipartimento di Scienze della Terra, Università di Torino, Via Valperga Caluso 35, 10125 Torino, Italy

2. NatRisk, Centro Interdipartimentale sui Rischi Naturali in Ambiente Montano e Collinare, Università degli Studi di Torino, Italy

Abstract

AbstractStromboli is a unique open conduit volcano and a natural laboratory for investigating how volatiles migrate and concentrate under dynamic conditions. Fluid phases are involved in magma decompression and pressurization, modulate Strombolian activity and govern magma rise and fragmentation processes. Here, we have revisited the available data on the last two major eruptions at Stromboli volcano and concentrated our analysis on the 2007 eruption. First, we analysed petrological-geochemical data to assess equilibrium conditions by using standard thermobarometry; we then used a grid of selected reactions which involve solid-melt-fluid equilibria to better constrain the PT regimes that adequately describe our system. Primitive hydrous basaltic melts, reported in literature and preserved as melt inclusions in olivine (with 2.3–3.8 wt% of H2O and 890–1590 ppm CO2), are in equilibrium with forsteritic olivine and a diopsidic clinopyroxene at average pressures of 260 (±47) MPa for temperatures approaching 1170 (±17) °C and calculated (mole fraction of CO2 within the melt) in the range 0.60–0.76. Ca-rich or ultracalcic melts are regarded as the result of decompression along a steep adiabatic and/or isothermal curve. During this process the magma will cross-cut the stability field of diopside and enter the liquidus field. The earlier crystallized diopside is destabilized and reacts with the coexisting liquid phase leading to the formation of ultracalcic melts. Ejected golden pumices (with 2–3 wt% H2O) are in equilibrium with Ca-pyroxene, forsteritic olivine and anorthitic plagioclase at 150–220 MPa and temperatures of 1120–1150 °C. Evolved melt inclusions (substantially degassed) in less magnesian olivine (c. Fo70) of the scorias show average equilibration pressures of 78 (±20) MPa and temperatures of 1138 (±14) °C. In summary, the higher P–T regimes associated with the origin of primitive melt inclusions are representative of the base of the chamber, where the ferromagnesian phases may crystallize and cumulate. The magma with a bulk composition typical of the pumices is stored in the middle and main part of the chamber (likely its axial sector) and these materials are erupted during paroxysmal and, more rarely, major explosions. Finally, more evolved melt inclusions found in the olivine of the scorias are indicative of crystallization within the conduit or its root zone connected to the upper part of the chamber.Pure extensional regimes and recent geophysical data suggest the existence of a prolate ellipsoidal magma chamber below Stromboli. To constrain its volume we estimated the magma volumes associated with SO2 degassing (during the 2007 major eruption) by applying a refined petrological model that allowed us to estimate the magma fluxes in the subvolcanic region (i.e. the magma flux entering the degassing zone). The long-term trend of this magma flux follows an overall exponential decay, typical of pressurized magmatic systems, and indicates that magma rise was accompanied and followed by slow decompression. This trend was shown to be consistent with release of elastic strain accumulated either by pressurization of the rocks surrounding the magma reservoir, by pressurization of the magma itself or both. By analysing the reservoir elastic response during magma decompression, we found that the current Stromboli magma chamber volume may be adequately constrained to 1–2 km3.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3