Glacio-marine iron formation deposition in a c. 700 Ma glaciated margin: insights from the Chuos Formation, Namibia

Author:

Lechte Maxwell A.1ORCID,Wallace Malcolm W.1,Hoffmann Karl-Heinz2

Affiliation:

1. School of Earth Sciences, University of Melbourne, Elgin Street, Parkville, Victoria 3010, Australia

2. Geological Survey of Namibia, 1 Aviation Road, Windhoek, Namibia

Abstract

AbstractThe Chuos Formation of Namibia is the sedimentary product of the Neoproterozoic Sturtian (c. 720–660 Ma) glaciation and contains massive diamictites intercalated with finely laminated iron formation. Similar Sturtian glacially associated iron formations are found globally. The iron formations are laminated and generally very pure. The diamictites are massive, contain abundant clasts and can be highly ferruginous. These two lithofacies are repeatedly interbedded with no facies transition. The iron formations preserve the rare earth element geochemistry of their contemporaneous seawater and contain rare Ce and Eu anomalies. The geochemistry does not implicate a hydrothermal influence. The Chuos iron formation is interpreted to have been deposited in an ice-proximal glacio-marine setting in a sub-ice shelf environment. Oxygenated fluids, such as sea ice brines and glacial meltwater, are invoked as a mechanism to precipitate iron oxides due to mixing with ferruginous seawater. The iron formation accumulates under an ice shelf with little clastic input. Episodic movement of the grounding line reworks the sediments into ferruginous diamict. Glaciogenic debris flows are intercalated with the iron formations. Palaeobathymetric depressions and accompanying brine pools increased the preservation potential of these iron formations. This model explains the relationship between glaciation and iron formation in the Neoproterozoic.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3