The Baltoscandian margin detrital zircon signatures of the central Scandes

Author:

Gee David G.1,Ladenberger Anna2,Dahlqvist Peter2,Majka Jarosław1,Be'eri-Shlevin Yaron34,Frei Dirk5,Thomsen Tonny6

Affiliation:

1. Department of Earth Sciences, Uppsala University, Uppsala, Sweden

2. Geological Survey of Sweden, Uppsala, Sweden

3. Swedish Museum of Natural History, Stockholm, Sweden

4. The Hebrew University of Jerusalem, Jerusalem, Israel

5. Stellenbosch University, Matieland, South Africa

6. Geological Survey of Denmark and Greenland, Copenhagen, Denmark

Abstract

AbstractIn central parts of the Scandinavian Caledonides, detrital zircon signatures provide evidence of the change in character of the Baltoscandian crystalline basement, from the characteristic Late Palaeoproterozoic granites of the Transscandinavian Igneous Belt (TIB, c. 1650–1850 Ma) in the foreland Autochthon to the typical, mainly Mesoproterozoic-age profile (c. 950–1700 Ma) of the Sveconorwegian Orogen of southwestern Scandinavia in the hinterland. Late Ediacaran to Early Cambrian shallow-marine Vemdal quartzites of the Jämtlandian Nappes (Lower Allochthon) provide strong bimodal signatures with TIB (1700–1800 Ma) and Sveconorwegian, sensu stricto (900–1150 Ma) ages dominant. Mid-Ordovician turbidites (Norråker Formation) of the Lower Allochthon in Sweden, sourced from the west, have unimodal signatures dominated by Sveconorwegian ages with peaks at 1000–1100 Ma, but with subordinate components of older Mesoproterozoic zircons (1200–1650 Ma). Latest Ordovician shallow-marine quartzites also yield bimodal signatures, but are more dispersed than in the Vemdal quartzites. In the greenschist facies lower parts of the Middle Allochthon, the Fuda (Offerdal Nappe) and Särv Nappe signatures are either unimodal or bimodal (950–1100 and/or 1700–1850 Ma), with variable dominance of the younger or older group, and subordinate other Mesoproterozoic components. In the overlying, amphibolite to eclogite facies lower part of the Seve Nappe Complex, where the metasediments are dominated by feldspathic quartzites, calcsilicate-rich psammites and marbles, most units have bimodal signatures similar to the Särv Nappes, but more dispersed; one has a unimodal signature very similar to the Ordovician turbidites of the Jämtlandian Nappes. In the overlying Upper Allochthon, Lower Köli (Baltica-proximal, Virisen Terrane), Late Ordovician quartzites provide unimodal signatures dominated by Sveconorwegian ages (sensu stricto). Further north in the Scandes, previously published zircon signatures in quartzites of the Lower Allochthon are similar to the Vemdal quartzites in Jämtland. Data from the Kalak Nappes at 70°N are in no way exotic to the Sveconorwegian Baltoscandian margin. They do show a Timanian influence (ages of c. 560–610 Ma), as would be expected from the palinspastic reconstructions of the nappes. Thus the detrital zircon signatures reported here and published elsewhere provide supporting evidence for a continuation northwards of the Sveconorwegian Orogen in the Neoproterozoic, from type areas in the south, along the Baltoscandian margin of Baltica into the high Arctic.Supplementary material:LA-ICP-MS U–Pb analyses are available at http://www.geolsoc.org.uk/SUP18699.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Reference103 articles.

1. Albrecht L. G. (2000) Early Structural and Metamorphic Evolution of the Scandinavian Caledonides: A Study of the Eclogite-Bearing Seve Nappe Complex at the Arctic Circle, Sweden. PhD thesis (Lund University, Sweden).

2. Correction of common lead in U–Pb analyses that do not report 204Pb

3. Sveconorwegian crustal underplating in southwestern Fennoscandia: LAM-ICPMS U–Pb and Lu–Hf isotope evidence from granites and gneisses in Telemark, southern Norway

4. Provenance characteristics of the Brumunddal sandstone in the Oslo Rift derived from U–Pb, Lu–Hf and trace element analyses of detrital zircons by laser ablation ICPMS;Andersen;Norwegian Journal of Geology,2011

5. Evidence for hyperextension along the pre-Caledonian margin of Baltica

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3