Affiliation:
1. Statoil (UK) Limited, One Kingdom Street, London, W2 6BD, UK
2. British Geological Survey, Murchison House, West Mains Road, Edinburgh, EH9 3LA, UK
Abstract
AbstractThe Faroe–Shetland Basin is located offshore NW Scotland on the SE margin of the Atlantic Ocean and comprises numerous sub-basins and intra-basin highs that are host to a number of significant hydrocarbon discoveries. The principal hydrocarbon discoveries are in Paleocene–Eocene strata, although earlier strata are known, and their existence is therefore intimately linked to the opening and evolution of the North Atlantic from 54 Ma. The final rifting and separation of Greenland from Eurasia is commonly attributed to the arrival of a mantle plume which impacted beneath Greenland during early Tertiary time. Moreover, the ensuing plate separation is commonly described in terms of instantaneous unzipping of the North Atlantic, whereas in reality proto-plate boundaries were more diffuse during their inception and the linked rift system which we see today, including connections with the Arctic, was not established until Late Palaeogene–Early Neogene time. From a regional analysis of ocean basin development, including the stratigraphic record on the adjacent continental margins, the significance of the Greenland–Iceland–Faroe Ridge and the age and role of Iceland, we propose a dual rift model whereby North Atlantic break-up was only partial until the Oligo-Miocene, with true final break-up only being achieved when the Reykjanes and Kolbeinsey ridges became linked. As final break-up coincides with the appearance of Iceland, this model negates the need for a plume to develop the North Atlantic with rifting reliant on purely plate tectonic mechanisms, lithospheric thinning and variable decompressive upper mantle melt along the rifts.
Publisher
Geological Society of London
Subject
Geology,Ocean Engineering,Water Science and Technology
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献