Affiliation:
1. Department of Geological Sciences, Petroleum Geophysics MSc Program, Chiang Mai University, Chiang Mai, Thailand chrissmorley@gmail.com
Abstract
AbstractThe rift basins of Thailand exhibit remarkable diversity of fault displacement patterns, fault length–displacement characteristics and mapped fault patterns during late rift, and post-rift, stages. These patterns reflect influences by: (1) zones of strength anisotropy in the pre-rift basement; (2) syn-rift fault patterns on post-rift faults; (3) spatial stress deflection, commonly related to irregularities in major fault profiles, and the basement–sediment interface; (4) temporal stress rotation, usually related to changes in the regional plate setting; and (5) varying strength properties (strain hardening or softening) of fault zones during their life. These influences created strongly segmented boundary faults, and long, low-displacement post-rift fault trends. The former are commonly strongly over-displaced, while the latter can be strongly under-displaced with respect to their length compared with typical length:displacement distributions. Seismic interpretation of multi-rift fault patterns requires 3D data to identify the complexities, otherwise the linkage pattern between deeper and shallower faults, and the changing fault strike-directions with depth, may be incorrectly mapped. Incorrect identification of fault patterns as breached relay structures may also arise. Oblique extension, the influence of pre-existing trends and stress rotation in multi-phase rifts provides a more comprehensive explanation for the observed features than the strike-slip interpretation of previous studies.
Publisher
Geological Society of London
Subject
Geology,Ocean Engineering,Water Science and Technology