Structural core observations in a siliciclastic reservoir-scale framework

Author:

Fossen Haakon1ORCID

Affiliation:

1. Museum of Natural History/Department of Earth Science, University of Bergen, Norway

Abstract

Abstract Detailed knowledge of subseismic structures and their influence on reservoir production performance is important for optimal reservoir management. Predicting subseismic structures from seismic-scale structural interpretations is inherently difficult without the use of core data. Cores allow direct measurements of porosity and permeability of deformed rocks and enable researchers to make detailed investigation of deformation mechanisms and cementation processes. Frequency, distribution and sometimes orientation of planar structures can be constrained. Such observations are then used together with location relative to seismically mapped fault and fold structures, and with respect to lithology and stratigraphy. However, a significant gap exists between the scale of core observation and the size of structures mappable from seismic data. Bridging this gap requires a sound general understanding of the different structures that occur in reservoirs, which, in addition to faults, includes drag folds, veins, fractures and the many types of deformation bands that can exist in porous rocks. Proper understanding of such subseismic structures is primarily based on outcrop-based observations and analyses, aided by physical experiments and numerical modelling. We stress that integrating such cutting-edge knowledge with core, seismic and other case-specific subsurface data in an appropriate tectonic context is paramount for realistic reservoir characterization and successful reservoir management.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Reference58 articles.

1. Fault and fracture characteristics of a major fault zone in the northern North Sea: analysis of 3D seismic and oriented cores in the Brage Field (Block 31/4)

2. Effect of faulting on fluid flow in porous sandstones: geometry and spatial distribution;Antonellini M.A.;AAPG Bulletin,1995

3. Microstructure of deformation bands in porous sandstones at Arches National Park, Utah

4. Small faults formed as deformation bands in sandstone

5. The effect of faults on the 3D connectivity of reservoir bodies: a case study from the East Pennine Coalfield, UK Petroleum;Bailey W.R.;Geoscience,2002

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The role of core in twenty-first century reservoir characterization: an introduction;Geological Society, London, Special Publications;2023-10-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3