Interaction between mantle-derived magma and lower arc crust: quantitative reactive melt flow modelling using STyx

Author:

Riel Nicolas12,Bouilhol Pierre13,van Hunen Jeroen1,Cornet Julien1,Magni Valentina14,Grigorova Vili1,Velic Mirko5

Affiliation:

1. Department of Earth Sciences, Science Labs, Durham University, UK

2. Present address: Department of Earth Science, Bergen University, Bergen, Norway

3. Centre de Recherches Pétrographiques et Géochimiques, Université de Lorraine, UMR 7358, 54500 Vandoeuvre-lès-Nancy, France

4. Department of Geosciences, University of Oslo, Norway

5. School of Earth, Atmosphere and Environment, Monash University, Melbourne, Victoria, Australia

Abstract

AbstractThe magmatic processes occurring in the lowermost arc crust play a major role in the evolution of mantle-wedge-derived melt. Geological evidence indicates that mantle-derived magmas and in-situ products of lower crust partial melting are reacting in a pervasive melt system and are eventually extracted towards higher levels of the crust. Resolving the relative contribution of mantle-derived magma and partial melting products of pre-existing crust is essential to: (1) quantify crustal growth rate; (2) better understand the compositional range of arc magmatic series; and (3) constrain the chemical differentiation of the lower crust. In this study, we present STyx, a new modelling tool, coupling melt and heat flow with petrology to explore the dynamics of storage, transfer and hybridization of melts in complex liquid/rock systems. We perform three models representing a magmatic event affecting an amphibolitic lower arc crust in order to quantify the relative contribution between partial melting of the pre-existing crust and fractional crystallization from mantle-derived hydrous-magma. Our models demonstrate that most of the differentiated arc crust is juvenile, deriving from the differentiation of mantle melts, and that pre-existing crust does not significantly contribute to the total thickness of magmatic products.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3