Orbital-climate control of mass-flow sedimentation in a Miocene alluvial-fan succession (Teruel Basin, Spain)

Author:

Ventra Dario1,Abels Hemmo A.2,Hilgen Frederik J.1,de Boer Poppe L.1

Affiliation:

1. Faculty of Geosciences, Utrecht University, 3583CS Utrecht, The Netherlands

2. Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628CN, Delft, The Netherlands

Abstract

AbstractThe role of climate change in driving alluvial-fan sedimentation is hard to assess in pre-Quaternary successions, for which detailed chronologies and climate-proxy records cannot be easily established. In the Teruel Basin (Spain), high-resolution (104–105 years) chronological and palaeoclimatic information was derived by orbital tuning of Late Miocene mudflat to ephemeral-lake deposits. The semi-arid palaeoclimate made this low-gradient, basinal environment sensitive to thresholds in the local hydrological balance. Basic facies rhythms are attributed to alternating, relatively humid/arid phases controlled by the climatic precession cycle. The lower stratigraphic interval of this reference section interfingers with distal, coarse-clastic beds from a coeval alluvial fan. The consistent interdigitation of debris-flow deposits with distal strata indicative of arid-to-humid climate transitions shows that fan sedimentation was regulated by climate cyclicity. In particular, the largest volumes of terrigenous debris were shed from the fan onto adjacent mudflats during transitions to relatively humid periods with pronounced seasonality, during precession minima. Distal to medial sections within alluvial-fan outcrops also feature prominent, laterally continuous alternations of coarse- and fine-clastic packages. This high degree of architectural organization, uncommon in fan successions, and stratigraphic relationships with the reference section suggest orbitally controlled climate change to have been the forcing mechanism.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3