Slope stability hazard in a fjord environment: Douglas Channel, Canada

Author:

Stacey Cooper D.1ORCID,Lintern D. Gwyn1ORCID,Shaw John2,Conway Kim W.1

Affiliation:

1. Natural Resources Canada, Geological Survey of Canada Pacific, 9860 W Saanich Rd, Sidney, British Columbia V8L 4B2, Canada

2. Natural Resources Canada, Geological Survey of Canada Atlantic, 1 Challenger Drive, Dartmouth, Nova Scotia B2Y 4A2, Canada

Abstract

AbstractDouglas Channel is a 140 km-long fjord system on Canada's west coast where steep topography, high annual precipitation and glacially over-deepened bathymetry have resulted in widespread slope failures. A 5 year project involving numerous marine expeditions to the remote area produced a comprehensive assessment of the magnitude and frequency of slope failures in the region. A classification scheme is presented based on morphology and failure mechanism: (1) debris flows are the most common in all parts of the fjord – they are often small with a subaerial component where fjord wall slope is very high or tend to exceed volumes of 106 m3 where fjord wall slope is lower, allowing for accumulation of marine sediments; (2) large failures of oversteepened glacial sediments occurring at transgressive moraines and glaciomarine plateaus following deglaciation – the largest is at Squally Channel with an estimated volume of 109 m3; (3) fjord wall failures that involve bedrock slump or rock avalanche; (4) translation of marine sediments; (5) composite/other slides; and (6) two scallop-shaped sackungen, or deep-seated gravitational slope deformations of granodiorite with volumes exceeding 60 × 106 m3. The postglacial marine sedimentary record shows evidence of large-scale slope failures of all styles that were especially active following deglaciation. The Holocene marks a transition to a lower frequency and change to primarily debris flows and smaller rock slides. Slope failures that may be capable of generating tsunamis and may be damaging to coastal infrastructure have occurred in all parts of Douglas Channel through much of the Holocene. Here we present a morphological analysis with volume estimates and age control using multibeam bathymetry, high-resolution sub-bottom data and sediment cores. The study details an extensive analysis of slope failures in a fjord network that can be extended to other fjord environments.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3