Submarine canyons, slope failures and mass transport processes in southern Cascadia

Author:

Hill Jenna C.1ORCID,Watt Janet T.1ORCID,Brothers Daniel S.1ORCID,Kluesner Jared W.1

Affiliation:

1. US Geological Survey, Pacific Coastal and Marine Science Center, Santa Cruz 95060, CA, USA

Abstract

AbstractMarine turbidite records have been used to infer palaeoseismicity and estimate recurrence intervals for large (>Mw7) earthquakes along the Cascadia Subduction Zone. Conventional models propose that upper slope failures are funneled into submarine canyons and develop into turbidity flows that are routed down-canyon to deep-water channel and fan systems. However, the sources and pathways of these turbidity flows are poorly constrained, leading to uncertainties in the connections between ground shaking, slope failure and deep-water turbidites. We examine the spatial distribution of submarine landslides along the southern Cascadia margin to identify source regions for slope failures that may have developed into turbidity flows. Using multibeam bathymetry, sparker multichannel seismic and chirp sub-bottom data, we observe relatively few canyon head slope failures and limited evidence of large landslides on the upper and middle slope. Most of the submarine canyons are draped with sediment infill in the upper reaches and do not appear to be active sediment conduits during the recent sea-level highstand. In contrast, there is evidence of extensive mass wasting of the lower slope and non-channelized downslope flows. Contrary to previous studies, we propose that failures along the lower slope are the primary sources for deep-sea seismoturbidites in southern Cascadia.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3