Characterization and origin of large Campanian depressions within the Chalk Group of the Danish Central Graben – implications for hydrocarbon exploration and development

Author:

Smit Florian W. H.12ORCID,Stemmerik Lars2,Lüthje Mikael1,van Buchem Frans S. P.3

Affiliation:

1. Danish Hydrocarbon Research and Technology Centre, Technical University of Denmark, Elektrovej Building 375, 2800 Kongens Lyngby, Denmark

2. Geological Survey of Denmark and Greenland, Øster Voldgade 10, 1350 Copenhagen, Denmark

3. Halliburton-Landmark, 97 Jubilee Avenue, Milton Park, Abingdon OX14 4RW, UK

Abstract

AbstractThis study re-examines large and deep U-shaped reflections (2–4 km wide and 100–200 m deep) within the Upper Cretaceous–Danian Chalk Group in the inverted Roar Basin of the Danish North Sea, previously interpreted as a moat associated with a contour-parallel current system and/or erosive channels formed by gravity-driven turbidites. Improved 3D seismic data quality and seismic interpretation techniques helped to identify overlooked reflection terminations, which suggest that rather than a linear depression, the U-shaped reflections outline several bowl-shaped depressions. In addition, vertical high-amplitude columns and vertical discontinuity zones within and below the depressions were recognized and interpreted to indicate the presence of small fluid pipes, suggesting that the formation of the depressions is more complex. Carbon isotope analysis of high acoustic impedance beds within the underlying Lower Cretaceous chalk showed negative δ13C values down to −20‰, and are interpreted to indicate sediments influenced by methane-derived authigenic carbonates. Permo-Triassic half-grabens seem to have been a major source of gas-bearing fluids, as evidenced by hydrocarbon leakage phenomena within Triassic–Lower Cretaceous strata. In areas where Zechstein salt is present, the leakage root lies at salt welds, causing the formation of focused seismic reflection wipe-out and dim zones. In areas where salt was absent, the leakage root comprises a much more diffuse zone across the fault boundaries of the Permo-Triassic half-graben, and gas chimneys are characterized seismically as broad vertical dim zones up to 10 km wide. Campanian inversion tectonics caused fault reactivation and several hundreds of metres of uplift in the Roar Basin, which created an instability for the trapped gas-bearing fluids. Gentle fluid venting through observed pipes caused sediment suspension and entrainment, which could be carried away by bottom-current activity, causing localized zones of non-deposition and the formation of individual depressions. This model thus does not disregard the role of bottom-current activity in the formation of the depressions, yet it includes a fluid-venting element that fits better with the architecture and overall evidence for fluid-venting features in pre-chalk strata, as well as in the Chalk Group. Importantly, it shows that prior to the thermogenic maturation of the main source rock (i.e. the Bo Member of the Farsund Formation in the Late Miocene), fluid venting had already occurred on the Late Cretaceous seafloor from deeper source rocks that are at present overmature.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3