Reaction textures, pressure–temperature paths and chemical dates of monazite from a new suite of sapphirine–spinel granulites from parts of the Eastern Ghats Province, India: insights into the final amalgamation of India and East Antarctica during the formation of Rodinia

Author:

Das Enakshi1,Karmakar Subrata1,Dey Anindita1,Karmakar Shreya1,Sengupta Pulak1

Affiliation:

1. Department of Geological Sciences, Jadavpur University, Kolkata 700032, India

Abstract

AbstractA suite of Mg–Al granulites from two new localities in the Eastern Ghats Province are investigated to put constraints on: (a) the thermal and baric evolution of these rocks; (b) the timing of high-grade metamorphisms (chemical dating of monazite); (c) the tectonic setting where the high-grade metamorphisms occurred; and (d) a possible link between India and East Antarctica during the formation of the Rodinia supercontinent. Supporting the proposition of polymetamorphism over single metamorphism, our study documents at least two distinct phases of high-grade metamorphism that occurred in two contrasting tectonic settings. Reconstructed pristine spinel composition from oxide aggregates, the Al content of coronitic orthopyroxene over sapphirine and spinel, and the constraints of the FeO–MgO–Al2O3–SiO2 (FMAS) topology in the FMAS system document temperatures in excess of 1070°C at 8–9 kbar pressure (>1100°C GPa−1). This study shows that such an extreme metamorphic condition was reached along a counter-clockwise PT trajectory presumably in an extensional setting at approximately 1.2 Ga. The eventual collision of India and East Antarctica reworked the near-isobarically cooled assemblages of the first event, and triggered exhumation of the former lower crust to the upper-crustal depth along a steeply decompressive trajectory during the formation of the Rodinia supercontinent (c. 0.95–0.90 Ga).Supplementary material: Representative electron microprobe analyses of monazite in wt%, calculated apparent ages and ±2σ error are available at https://doi.org/10.6084/m9.figshare.c.3771044

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Reference79 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3