Self-similar clustering distribution of structural features on Ascraeus Mons (Mars): implications for magma chamber depth

Author:

Pozzobon Riccardo12,Mazzarini Francesco3,Massironi Matteo2,Marinangeli Lucia1

Affiliation:

1. IRSPS-DISPUTer, Università degli Studi G. d’Annunzio, Via dei Vestini 31, I-65127, Chieti, Italy

2. Dipartimento di Geoscienze, Università degli Studi di Padova, via G. Gradenigo 6, 35131, Padova, Italy

3. Istituto Nazionale di Geofisica e Vulcanologia, Via Della Faggiola 32, 56100, Pisa, Italy

Abstract

AbstractThe occurrence and distribution of monogenic eruptive features in volcanic areas testify to the presence of deep-crustal or subcrustal magma reservoirs hydraulically connected to the surface via a fracture network. The spatial distribution of vents can be studied in terms of self-similar (fractal) clustering, described by a fractal exponent D and defined over a range of lengths (l) between a lower and upper cutoff, Lco and Uco, respectively. The computed Uco values for several volcanic fields on Earth match the thickness of the crust between vents and magma reservoirs at depth. This analysis can thus be extended to other volcanic fields and volcanoes on rocky planets in the solar system where features such as vents and dykes occur, and for where complementary geophysical data are currently lacking. We applied this method to the Ascraeus Mons volcano on Mars, which presents hundreds of collapse pits similar to those observed on Earth volcanoes that are most likely related to feeder dykes. Based on structural mapping with High Resolution Stereo Camera data at 12 m/px and Context Camera data at 6 m/px mosaics, more than 2300 collapse pits and dyke traces were analysed, revealing two distinct fractal clustered populations. The obtained Uco values reveal the presence and likely depth of both a deep magma reservoir (c. 60 km deep) and a small shallower chamber (c. 11 km deep). This analysis can help to better constrain the depth and time evolution of volcanic processes on Tharsis, and on terrestrial planets’ volcanoes in general.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3