Role of Avalonia in the development of tectonic paradigms

Author:

Murphy J. Brendan12,Nance R. Damian3,Keppie J. Duncan4,Dostal Jaroslav5

Affiliation:

1. Department of Earth Sciences, St Francis Xavier University, Antigonish, Nova Scotia, B2G 2W5, Canada

2. Earth Dynamics Research Group, ARC Centre of Excellence for Core to Crust Fluid Systems, The Institute for Geoscience Research, Department of Applied Geology, Curtin University, GPO Box U1987, WA 6845, Australia

3. Department of Geological Sciences, 316 Clippinger Laboratories, Ohio University, Athens, OH 45701, USA

4. Departamento de Geología Regional, Instituto de Geología, Universidad Nacional Autónoma de México, 04510 México D.F., Mexico

5. Department of Geology, St Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada

Abstract

AbstractThe geological evolution of Avalonia was fundamental to the first application of plate tectonic principles to the pre-Mesozoic world. Four tectonic phases have now been identified. The oldest phase (760–660 Ma) produced a series of oceanic arcs, some possibly underlain by thin slivers of Baltica crust, which accreted to the northern margin of Gondwana between 670 and 650 Ma. Their accretion to Gondwana may be geodynamically related to the break-up of Rodinia. After accretion, subduction zones stepped outboard, producing the main phase (640–570 Ma) of arc-related magmatism and basin formation that was coeval with the amalgamation of Gondwana. Arc magmatism terminated diachronously between 600 and 540 Ma by the propagation of a San Andreas style transform fault, followed by the Early Paleozoic platformal succession used by Wilson to define the eastern flank of the proto-Atlantic (Iapetus) Ocean. This implies the ocean outboard from the northern Gondwanan margin survived into the Cambrian. Avalonia is one of several terranes distributed obliquely with respect to the adjacent cratonic provinces of Gondwana and Baltica, implying that these terranes evolved on different cratonic basements. As a result, their ages and differing isotopic signatures can be used to reconstruct their respective locations along the ancient continental margin.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3