Rift-basin development: lessons from the Triassic–Jurassic Newark Basin of eastern North America

Author:

Withjack M. O.1,Schlische R. W.1,Malinconico M. L.2,Olsen P. E.3

Affiliation:

1. Department of Earth & Planetary Sciences, Rutgers University, Piscataway, NJ 08854, USA

2. Department of Geology and Environmental Geosciences, Lafayette College, Easton, PA 18042, USA

3. Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA

Abstract

AbstractWe use seismic, field, core, borehole and vitrinite-reflectance data to constrain the development of the Newark Rift Basin, one of the largest and most thoroughly studied basins of the eastern North American rift system that formed during the break-up of Pangaea. These data provide critical information about the geometry of the preserved synrift section and the magnitude of post-rift erosion. We incorporate this information into a new structural restoration of the basin. Our work shows that the Newark Basin was initially narrow (<25 km) and markedly asymmetric; synrift strata show significant thickening towards the basin-bounding faults. Subsequently, the basin became wider (perhaps >100 km wide), deeper (up to 10 km) and less asymmetric; synrift strata exhibit subtle thickening towards the basin-bounding fault system. Several intrabasin faults dissected the Newark Basin after synrift deposition, and the basin fill was tilted (c.10°NW) and folded. Erosion (up to 6 km) accompanied the intrabasin faulting, NW tilting and folding, significantly reducing the basin size. Our work suggests that the eastern North American rift system is characterized by a very broad zone of upper-crustal extension in which a few, wide, deep, long-lived, fault-bounded basins (like the Newark Basin) accommodated much of the extension.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3