Structural evolution, metamorphism and melting in the Greater Himalayan Sequence in central-western Nepal

Author:

Carosi Rodolfo1ORCID,Montomoli Chiara2ORCID,Iaccarino Salvatore1ORCID,Visonà Dario3ORCID

Affiliation:

1. Dipartimento di Scienze della Terra, Università di Torino, via Valperga Caluso, 35 10125 Torino, Italy

2. Dipartimento di Scienze della Terra, Università di Pisa, via S. Maria, 53 56126 Pisa, Italy

3. Dipartimento di Geoscienze, Università di Padova, via G. Gradenigo, 6 35131 Padova, Italy

Abstract

AbstractJoining geological mapping, structural analysis, petrology and geochronology allowed the internal architecture of the Greater Himalayan Sequence (GHS) to be unraveled. Several top-to-the-south/SW tectonic–metamorphic discontinuities developed at the regional scale, dividing it into three main units exhumed progressively from the upper to the lower one, starting from c. 40 Ma and lasting for several million years. The activity of shear zones has been constrained and linked to the pressure–temperature–time–deformation (PTtD) evolution of the deformed rocks by the use of petrochronology. Hanging wall and footwall rocks of the shear zones recorded maximum PT conditions at different times. Above the Main Central Thrust, a cryptic tectonometamorphic discontinuity (the High Himalayan Discontinuity (HHD)) has been recognized in Central-Eastern Himalaya.The older shear zone, that was active at c. 41–28 Ma, triggered the earlier exhumation of the uppermost GHS and allowed the migration of melt, which was produced at peak metamorphic conditions and subsequently produced in abundance at the time of the activation of the HHD. Production of melt continued at low pressure, with nearly isobaric heating leading to the genesis and emplacement of andalusite- and cordierite-bearing granites.The timing of the activation of the shear zones from deeper to upper structural levels fits with an in-sequence shearing tectonic model for the exhumation of the GHS, further affected by out-of-sequence thrusts.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3