Middle Miocene evolution and structural style of the Diapir Fold Zone, Eastern Carpathian Bend Zone, Romania: insights from scaled analogue modelling

Author:

Tămaș Dan M.1ORCID,Schléder Zsolt2,Tămaș Alexandra3,Krézsek Csaba2,Copoț Bianca1,Filipescu Sorin1ORCID

Affiliation:

1. Department of Geology and Centre for Integrated Geological Studies, Babeș-Bolyai University, 1 Kogălniceanu, 400084 Cluj-Napoca, Romania

2. Exploration B.U., OMV Petrom, 22 Coralilor, 013329 Bucharest, Romania

3. Department of Earth Sciences, Durham University, Lower Mount Joy, South Road, Durham DH1 3LE, UK

Abstract

AbstractThe Diapir Fold Zone of the Carpathians is the most prolific onshore hydrocarbon area in Romania. Structural complexity, mainly due to the presence of salt, combined with poor seismic quality near and below the salt lead to contrasting structural models in the area. To gain insights into the mid-Miocene tectonic evolution, structural geometries and the effects of penetrative strain, we ran dual décollement scaled sandbox models with layered brittle and ductile materials. Results of two analogue models (20 and 33% shortening) revealed that the onset of the deformation sequence was mainly characterized by layer-parallel shortening. As shortening continued, a foreland-verging sequence of supra-salt detachment folds and sub-salt duplexes evolved. The sub-salt duplexes are located directly below the crests of the detachment folds, as the development of these large wavelength anticlines was related to sub-salt deformation. Salt flow was another controlling factor of the deformation style, as salt accumulated in the anticlinal cores and increased the coupling in the supra-salt synclinal axis. Our results offer insights into the effects of salt on the kinematic evolution of this area, help to predict geometries in areas of poor seismic quality, and highlight the important contribution of penetrative strain on deformation and reservoir quality.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3