Percolation of the interacting elastic stress fields of aligned cracks as an alternative explanation of critical crack densities

Author:

Heffer Kes1

Affiliation:

1. Reservoir Dynamics Ltd., Kayness, Nightingale Avenue, West Horsley, Leatherhead, Surrey, KT24 6PB, UK (e-mail: kes@reservoir-dynamics.co.uk)

Abstract

AbstractThe concept that the lithosphere is in a general critical, or near-critical, mechanical state has previously assumed spatial intersection of fractures at the critical point. This paper provides an initial basis for an alternative mechanism in which elastic interactions between aligned, open, spatially separated (micro-)cracks in rock can, by themselves, lead to a continuous phase change at a critical threshold of crack density lower than that required for crack coalescence. The existence of a critical density of aligned cracks is first demonstrated on a regular 2D hexagonal grid when subjected to a central stress perturbation; at this critical density the elastic tensile stress interactions have a long-range effect. From the results of those calculations an approximation of the tensile stress field around a crack in 3D is provided. The percolation behaviour of such 3D bodies is discussed and a critical crack density in 3D for elastic interaction of 0.035 is deduced. This falls within the range of crack densities (0.015–0.045) interpreted from observations of shear-wave splitting in many different rocks. The possibility that critical crack interactions can be mostly elastic provides one explanation of the long-range nature of correlations in flowrate fluctuations in oilfields without large-scale seismicity.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3