Reconstructing sediment distribution in meandering river deposits through a simplified numerical modelling approach, with applications to the Holocene deposits of the Venetian Plain (Italy)

Author:

Sgarabotto Alessandro1ORCID,Bellizia Elena1,Finotello Alvise12,D'Alpaos Andrea1,Lanzoni Stefano3,Boaga Jacopo1,Cassiani Giorgio1,Ghinassi Massimiliano1

Affiliation:

1. Department of Geosciences, University of Padova, Padova, Italy

2. Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University Venezia, Venezia, Italy

3. Department of Civil, Environmental and Architectural Engineering, University of Padova, Padua, Italy

Abstract

AbstractMany present-day alluvial floodplains display traces of abandoned meandering channel belts developed during the past millennia (i.e. mid to late Holocene). Deposits of these ancient rivers represent preferential pathways for groundwater flows and related environmental issues, such as contaminant propagation or saltwater intrusion in coastal areas. However, since formative bankfull flows in such old and abandoned routes are hard to estimate, fossil meanders have not been commonly addressed by morphodynamic numerical models, and most of them have been investigated following classical sedimentological approaches based mainly on punctual data derived from sedimentary cores. This study aims at investigating the sediment distribution within different fossil bends on the southern Venetian Plain (NE Italy), and relating such distribution to numerically modelled bed shear stresses used herein as a proxy of sediment sorting patterns. For this purpose, formative flows in the studied palaeomeanders are first inferred from measured sediment grain size and estimates of bend widths. Then, shear stress distributions are computed along the studied palaeobends using a 2D linearized model. Model results are finally compared with conductivity distributions gauged directly in the field through electromagnetic induction investigations in the frequency domain. Our results suggest significant correlations between shear stress distributions and sediment sorting estimated from conductivity data. We deem that the integration between sedimentological reconstructions and state-of-the-art numerical modelling can provide a solid contribution to predicting the spatial distribution of sediment properties within ancient meandering channel belts, with relevant implications for the understanding of shallow aquifer dynamics and soil management.

Funder

Fondazione Cassa di Risparmio di Padova e Rovigo

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3