Modelling physical controls on mine water heat storage systems

Author:

Todd Fiona12ORCID,McDermott Christopher2ORCID,Harris Andrew Fraser2ORCID,Bond Alexander3,Gilfillan Stuart2ORCID

Affiliation:

1. The Coal Authority, Nottinghamshire, UK

2. School of GeoSciences, University of Edinburgh, Edinburgh, UK

3. Quintessa Ltd, Henley-on-Thames, UK

Abstract

The use of abandoned mines as a heat source and store has been receiving increased attention as a renewable heat source and storage solution in the transition away from traditional gas heating. The hydraulic, thermal and geomechanical processes governing heat storage and extraction are complex and understanding these processes is critical to safe heat extraction and injection into mine water systems. This paper outlines the development of a fully coupled thermo-hydraulic-mechanical (THM) 2D model to understand the mechanical stability of room and pillar workings during heat injection and extraction. It was found that the cyclical injection and extraction of heat does have an impact on both the modelled displacements and mechanical stability of the system. The impact risk reduces with temperature and the operational processes (e.g. injection temperature and water level) have more of an impact than the underlying geological conditions. These results are significant and could be included in a regulatory system to reduce the likelihood of stability impacts in mine water heating and cooling schemes. Thematic collection: This article is part of The Earth as a thermal battery: future directions in subsurface thermal energy storage systems collection available at: https://www.lyellcollection.org/topic/collections/thermal-energy

Funder

Natural Environment Research Council

Publisher

Geological Society of London

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3