Folding during soft-sediment deformation

Author:

Alsop G. I.1,Weinberger R.23,Marco S.4,Levi T.2

Affiliation:

1. Department of Geology and Petroleum Geology, School of Geosciences, University of Aberdeen, Meston Building, King's College, Aberdeen AB24 3UE, UK

2. Geological survey of Israel, 30 Malchei Israel Street, Jerusalem 95501, Israel

3. Department of Geological and Environmental Sciences, Ben Gurion University of the Negev, PO Box 653, Beer Sheva 84105, Israel

4. Department of Geophysics, Tel Aviv University, PO Box 39040, Tel Aviv 6997801, Israel

Abstract

AbstractThe detailed analysis of folding in rocks was in part pioneered by John Ramsay, and resulted in a range of techniques and criteria to define folds. Although folding of unlithified or ‘soft’ sediments is typically assumed to produce similar geometries to those in ‘hard rocks’, there has to date been little detailed analysis of such folds. The aim of this paper is therefore to investigate folds developed during soft-sediment deformation (SSD) by applying techniques established for the analysis of tectonic folds during hard-rock deformation (HRD). We use the Late Pleistocene Lisan Formation exposed around the Dead Sea as our case study, as the laminated lake sediments record intricacies of fold detail generated during seismically triggered slumping of mass transport deposits (MTDs) towards the depocentre of the basin. While it is frequently assumed that folds created during SSD are chaotic and form disharmonic structures, we provide analyses that show harmonic fold trains may form during slumping, although larger upright folds cannot be traced for significant distances and are more typically disharmonic. Our analysis also reveals a range of fold styles, with more competent detrital-rich layers displaying buckles (Class 1B), as well as upright Class 1A folds marked by thickened limbs. Class 1A buckle folds are generally considered to be created by flattening that overprints folds with an original Class 1B geometry. As thickened fold limbs are truncated by overlying erosive surfaces, the vertical flattening is considered to have occurred during the slump event. Different fold shapes may partially reflect variable flattening, depending on the original orientation of upright or recumbent folds, together with continued downslope-directed simple-shear deformation that modifies the fold geometry. Analysis of fold wavelength, amplitude and bed thickness allows us to plot strain contour maps, and indicates that beds defining slump folds display viscosity contrasts in the range of 50–250, which are similar to values estimated from folds created during HRD in metamorphic rocks. A range of refold patterns, similar to those established by John Ramsay in metamorphic rocks, are observed within slumps, and are truncated by the overlying sediments, indicating that they formed during a single progressive slump event rather than distinct ‘episodes’ of superimposed deformation. This study confirms that techniques developed for the analysis of folds created during HRD are equally applicable to those formed during SSD, and that resulting folds are generally indistinguishable from one another. Extreme caution should therefore be exercised when interpreting the origin of folds in the rock record where the palaeogeographical and tectonic contexts become increasingly uncertain, thereby leading to potential misidentification of folds created during SSD.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3