Identifying Martian gully evolution

Author:

Aston A. H.1,Conway S. J.2,Balme M. R.23

Affiliation:

1. Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK

2. Department of Earth & Environmental Sciences, CEPSAR, Open University, Walton Hall, Milton Keynes MK7 6AA, UK

3. Planetary Science Institute, Suite 106, 1700 East Fort Lowell Road, Tucson, AZ 85719, USA

Abstract

AbstractMartian gullies are small-scale, geologically recent features characterized by the alcove-channel-apron morphology associated with flows with a component of liquid water. Theories advanced to explain Martian gully formation include groundwater processes and melting of near-surface ice due to climate variation. Gullies are often associated with ‘mantling terrain’ that drapes topography at mid to high latitudes and which has been proposed to be ice-rich.We have morphologically classified Martian gullies into four groupings according to whether they form solely within the mantle (Type A), erode into ‘bedrock’ (Type B), and by how well developed they appear (1 or 2). Orientation, length, geological setting and latitude were also recorded, as well as whether more than one generation of gullies formed on a given slope (labelled ‘reactivated’).About 25% of gullies form solely within the mantle; these are generally shorter than gullies that erode bedrock and the morphologically simplest gullies (A1) are the shortest. We present latitude and orientation trends for the most recent episode of gully formation. We suggest that this recent activity is probably controlled by either deposition of ice-rich material or degradation of pre-existing ice-rich material.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3