Australia and Nuna

Author:

Betts P. G.1,Armit R. J.1,Stewart J.12,Aitken A. R. A.3,Ailleres L.1,Donchak P.4,Hutton L.4,Withnall I.4,Giles D.5

Affiliation:

1. School of Earth, Atmosphere and Environment, Monash University, Clayton Campus, VIC 3800, Australia

2. Present address: PGN Geoscience, GPO BOX 1033, Melbourne, VIC 3001, Australia

3. Centre for Exploration Targeting, The University of Western Australia (M006), Crawley, WA 6009, Australia

4. Geological Survey of Queensland, Level 10, 119 Charlotte Street, Brisbane, QLD 4000, Australia

5. Centre for Mineral Exploration Under Cover, School of Earth and Environmental Sciences, University of Adelaide, SA, Australia

Abstract

AbstractThe Australian continent records c. 1860–1800 Ma orogenesis associated with rapid accretion of several ribbon micro-continents along the southern and eastern margins of the proto-North Australian Craton during Nuna assembly. The boundaries of these accreted micro-continents are imaged in crustal-scale seismic reflection data, and regional gravity and aeromagnetic datasets. Continental growth (c. 1860–1850 Ma) along the southern margin of the proto-North Australian Craton is recorded by the accretion of a micro-continent that included the Aileron Terrane (northern Arunta Inlier) and the Gawler Craton. Eastward growth of the North Australian Craton occurred during the accretion of the Numil Terrane and the Abingdon Seismic Province, which forms part of a broader zone of collision between the northwestern margins of Laurentia and the proto-North Australian Craton. The Tickalara Arc initially accreted with the Kimberley Craton at c. 1850 Ma and together these collided with the proto-North Australian Craton at c. 1820 Ma. Collision between the West Australian Craton and the proto-North Australian Craton at c. 1790–1760 Ma terminated the rapid growth of the Australian continent.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Cited by 106 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3