Groundwater recharge as the trigger of naturally occurring intraplate earthquakes

Author:

Costain John K.1

Affiliation:

1. Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 mcc@vt.edu

Abstract

AbstractI explore the hypothesis that most intraplate earthquakes and their aftershock sequences are triggered by pore-fluid pressure increases. As proposed in this paper, data from the magnitude 5.7 Virginia earthquake of 23 August 2011 show that this is a two-step process. (1) First, from areas where there is greater than normal meteoric recharge, pore-fluid pressure diffusion by means of Biot slow waves transfers more pore-fluid pressure towards a future hypocentre. Here the cumulation of Biot slow waves produces a steady increase in pore-fluid overpressure until a main shock is triggered. (2) Then, aftershocks occur in the zone reaching from the depth of the main shock to a depth of a few kilometres below the land surface, preferring to localize in a weaker, pervasive anisotropic crustal fabric, in response to locally increased permeability and pore-fluid pressure transients caused by the main shock. The primary corrosive agent responsible for reducing the strength of silicate minerals in this upper crustal zone is water, so that quartz-rich crust tends to have lower values of Poisson's ratio. I show here that increases in pore-fluid overpressure from normal groundwater recharge can start crack dilation leading to fracturing and the creation of new permeability. Previous chemical analyses across the Central Virginia Piedmont that hosted the 2011 Virginia shock show high upper crustal quartz content. This proposed two-step model for a main shock-aftershock sequence explains why intraplate earthquakes are rarely correlated with recognizable brittle faults at the Earth's surface.Supplementary material: A biography of John Costain is available at https://dx.doi.org/10.6084/m9.figshare.c.2854324.v3

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3