Comparing organic-hosted and intergranular pore networks: topography and topology in grains, gaps and bubbles

Author:

Andrew Matthew1

Affiliation:

1. Carl Zeiss Microscopy4385 Hopyard Road, Pleasanton, CA 94588, USA

Abstract

AbstractThe relationship between pore structures was examined using a combination of normalized topographical and topological measurements in two qualitatively different pore systems: organic-hosted porosity, common in unconventional shale reservoirs; and intergranular porosity, common in conventional siliciclastic reservoirs. The organic-hosted pore network was found to be less well connected than the intergranular pore network, with volume-weighted coordination numbers of 1.16 and 8.14 for organic-hosted and intergranular pore systems, respectively. This disparity in coordination number was explained by differences in the pore shapes that are caused by variations in the geological processes associated with the generation of the pore network. Measurements of pore shape showed that the pores in the organic-hosted network were both significantly more spherical and had a more positive curvature distribution than the pores present within the intergranular network. The impact of such changes in pore shape on pore-network connectivity was examined by creating a suite of synthetic pore geometries using both erosion/dilation of the existing network and image-guided object-based methods. Coordination number, Euler characteristic and aggregate porosity analyses performed on these synthetic networks showed that organic-type pore networks become connected at much higher aggregate porosities (35–50%) than intergranular-type pore networks (5–10%).

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3