A global perspective of soil-forming conditions during the Late Pennsylvanian: potential stochastic forcing by geosphere–biosphere carbon pools

Author:

Gulbranson Erik L.1ORCID,Tabor Neil J.2

Affiliation:

1. Department of Environment, Geography, and Earth Sciences, Gustavus Adolphus College, 800 W College Ave, Saint Peter, MN, USA 56082

2. Roy M. Huffington Department of Earth Science, Southern Methodist University, Dallas, Texas, USA

Abstract

Abstract The Kasimovian was a time of ecological upheaval and large-magnitude changes in palaeoclimate. Referred to as the ‘collapse’ of the palaeotropical rainforests, the Kasimovian is marked by rapid changes in megafloral communities and associated ecosystem effects on vertebrates and invertebrates. p CO 2 variation coincided with these ecological catastrophes, varying between pre-industrial levels (PAL) to 2×PAL on 10 5 year timescales. Our understanding of the carbon cycle perturbations that affected p CO 2 and the connection of these climate-forcings to the terrestrial upheaval of palaeotropical rainforests remains a grand challenge. Here, the effects of palaeosol accumulation and/or degradation on the terrestrial carbon cycle during the Kasimovian is assessed. Palaeosols are surveyed from ice-free depositional basins on Pangaea and assessed for palaeolandscape equilibrium. An orbital framework is developed in order to understand the relationships of palaeosols, the carbon cycle, and insolation. Based on these analyses a key time interval emerges in the early Kasimovian. This time interval records a shift in palaeolandscape equilibria, terrestrial carbon cycling, and orbital forcing. The carbon cycling and landscape equilibria are eccentricity-paced; however, predominance of short eccentricity and obliquity throughout this interval indicates that the changes to palaeosols and the locus of carbon burial may have acted as a stochastic process.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An introduction to ice ages, climate dynamics and biotic events: the Late Pennsylvanian world;Geological Society, London, Special Publications;2023-03-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3