Affiliation:
1. School of Environment and Technology, Cockcroft Building, University of Brighton, Lewes Road, Brighton BN2 4GJ, UK
2. Scottish Universities Environmental Research Centre, East Kilbride, Glasgow G75 0QU, UK
Abstract
AbstractThe timing and extent of ocean oxygenation is controversial. Proterozoic sulphur isotope datasets often show marked fluctuations over small stratigraphic intervals, suggesting that oceanic sulphate concentrations were much lower than modern values. A large accumulation of Neoproterozoic sulphate (>8 million tonnes preserved), as stratiform barite rock, is located in the Grampian Highlands near Aberfeldy. Diagenetic/metamorphic alteration has caused pronounced δ34S variations near bed margins. This aside, barite throughout the deposits shows a narrow range in δ34S, mean 36±1.5‰. We infer that this is representative of contemporaneous seawater sulphate, and that δ34Sseawater was constant during deposition of a stratigraphical thickness >250 m of mostly fine-grained clastic sediments. Uniformity of δ34Sseawater during barite precipitation, even in thick (>10 m) beds and with the co-occurrence of abundant sulphides incorporating bacteriogenically reduced sulphur, implies no limit to availability of seawater sulphate during hydrothermal exhalative events. Our data, combined with previous δ34S research on Dalradian metasediments, suggest a stability, abundance and constancy of ocean sulphate in the Neoproterozoic. This contrasts with isotopic data using trace sulphate in limestones. It appears that, around the time of the Marinoan glaciation (c. 635 Ma), the ocean, although stratified at least locally, comprised a substantial reservoir of sulphate-bearing oxygenated seawater.
Publisher
Geological Society of London
Subject
Geology,Ocean Engineering,Water Science and Technology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献